Últimas atualizações
Novo endereço do Cognosco: http://www.cognoscomm.com
Diário das pequenas descobertas da vida.
Sábado, 11 de Março de 2006
Simplesmente complexo
Os primeiros números que o Homem conheceu eram os que usava para indicar as quantidades dos objectos que via.
Uma borboleta, duas pessoas, três carneiros, quatro abelhas, ...
Esse conjunto de números viria a ser chamado de Conjunto dos números Naturais e teria como símbolo (um N maiúsculo com um traço vertical junto à primeira perna, para o distinguir da letra)
São os números 1, 2, 3, 4, 5, 6, ..., 12 874, ..., 7 481 649 145 150, ..., isto é, todos os números positivos que não têm vírgula.

Mas o Homem, à medida que a sua cultura se ia expandindo, teve necessidade de inventar outros números. Surgiu-lhe a necessidade de se referir a quantidades negativas, ainda inteiras, mas menores do que zero.
Se eu tenho 3 € e compro uma revista por 5 €, eu fico a dever 2 €; se eu estou no topo de uma escada com 10 degraus e desço 2 degraus, fico dois degraus abaixo.
Estas quantidades são representadas pelo sinal negativo antes do número: -2.

Em termos matemáticos essa é a resposta à pergunta:
~ Qual é o número que, somado a 2, dá 0?

Esse conjunto de números viria a ser chamado de Conjunto dos números Inteiros e teria como símbolo (um Z maiúsculo com um traço oblíquo paralelo ao traço, para o distinguir da letra)
São os números ..., -1 412, ..., -786, ..., -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, ..., 54 567, ..., 587 363 534 452 345, ...
isto é, todos os números (positivos, negativos e o zero) que não têm vírgula.

~ Porque escolheram a letra Z? Não tinha mais lógica que fosse a letra I, de inteiros (ou mesmo I de
integers?

A escolha do símbolo vem da palavra alemã zahal, que significa número.

Mas e quando se divide algo em partes mais pequenas, que números se obtêm? Se eu tenho uma barra de chocolate e a divido igualmente por 3 amigos, com quanto chocolate é que cada um fica? Ficará, claro está (?), com 1/3 (um terço). Se eu tiver 3 bolos numa festa e cada um dos 19 convidados tiver uma fatia de igual tamanho, quanto bolo é que cada um fica? 3/19 (três dezanove avos).
(eis mais uma palavra em que a presença ou ausência ou o tipo de acento faz toda a diferença: avÓ, avÔ, avO)
Em termos matemáticos essa é a resposta à pergunta:
~ Qual é o número que resulta de dividir 1 por 3?

Esse conjunto de números seria chamado de Conjunto dos números Racionais e teria como símbolo (um Q maiúsculo com um traço vertical no seu interior, para o distinguir da letra)
São os números ..., - 4/5, -56/45, 1/2, 6/7, 3/2, 23453/83424, ...
isto é, todos os números (positivos, negativos e o zero) que resultam da divisão de dois números inteiros.


A escolha do símbolo vem do latim Quanta que significa quantidade.

Para a maioria das pessoas e para os usos mais frequentes no quotidiano, estes conjuntos numéricos poderão ser suficientes (aparentemente). Mas há questões que não são respondidas com um número natural, ou inteiro ou racional, tal como «num triângulo rectângulo com lados 1 e 1, quanto mede o terceiro lado?»

Foi esta a questão que atormentou os matemáticos gregos clássicos, nomeadamente Pitágoras (580 AC a 500 AC), que fundou e liderou a seita místico-matemática pitagórica.
Os pitagóricos acreditavam que tudo era formado por números (não só em termos figurativos mas mesmo em sentido literal). Os números que conheciam eram os números naturais, os inteiros e os racionais. Nada mais existia e tudo podia ser descrito pela divisão de dois números inteiros (mesmo os números naturais e os números inteiros não passam de números racionais, da divisão de números inteiros: 2 = 2/1 ou 6/3 ou 12/6 ou ...; 0 = 0/3 ou ...; -5 = -15 / 3 ou ...)

Foi na sua incessante procura da essência numérica racional das coisas que os pitagóricos determinaram a ligação entre a Música e a Matemática, o que deu origem à escala musical. Apenas os sons produzidos por dedilhar uma corda numa parte de uma divisão inteira produz uma nota agradável.
Foi o monge beneditino Guido d'Arezzo, no ano 1000 DC, que introduziu os nomes que actualmente se usam para as notas musicais: dó, ré, mi, fá, sol, lá, si.
Nessa altura era famosa uma música em Latim, criada em 770 DC. O iníco de cada verso era dado por uma nota diferente, cada uma mais aguda do que a anterior. Arezzo então chamou a cada nota a sílaba que lhe correspondia na música.
(Ut queant laxis, resonare fibris, mira gestorum, famuli tuorum, solve poluti, labii reatum sancte ioanes)

Foi depois mudado o nome «Ut» para o mais musical «dó», primeira sílaba de «Dominus» (Senhor) e foi acrescentada a nota «si», iniciais de «Sancte Ionnes» (São João), com que termina o sexto verso.

Uma das curiosas interdições dos pitagóricos era a proibição de comer leguminosas (feijões, favas, ...) Pitágoras acreditava que, na flatulência, perde-se uma parte da alma (era a sua explicação para a origem do ar que se soltava). Como estas leguminosas são conhecidas pelos seus efeitos flatulentos, Pitágoras proibia o seu consumo.

Foi também na escola pitagórica que se descobriu uma quantidade que não podia ser descrita pela divisão de dois números inteiros. Num triângulo rectângulo de lados 1 e 1, o terceiro lado tem um comprimento de raíz quadrada de 2, número que se prova facilmente não poder ser descrito como um racional. Diz-se que os pitagóricos, horrorizados pela descoberta, mataram o discípulo que encontrou essa «aberração».
Uma característica que distingue números racionais de números irracionais é que os primeiros são sempre números com finitas casas decimais (um número limitado de algarismos depois da vírgula) ou então têm infinitas casas decimais mas têm sempre o mesmo conjunto de números a repetir-se, o chamado período.
0,456 é uma dízima finita, logo é racional por isso pode escrever-se como uma fracção(57/125);
0,1121212121... é uma dízima infinita periódica (período = 21), logo é racional e por isso uma fracção (111/990);
0,5613456832... é uma dízima infinita não periódica logo é irracional e não se pode escrever como uma fracção.


Mas este tipo de números não parava de aparecer. Na circunferência era o Pi, em questões artísticas e de harmonia a razão de ouro φ (que terá sido descoberta por Theano, matemática e mulher de Pitágoras, após a morte deste.)

Esse conjunto de números seria chamado de Conjunto dos números Irracionais e estes, juntamente com os números racionais formam o Conjunto dos números Reais. Foi dado a este o símbolo (um R maiúsculo com um traço vertical ao lado, para o distinguir da letra).
Durante muito tempo foram estes os números que se conheciam, esta infinidade de números que descreviam tudo o que as pessoas podiam pensar (daí o seu nome).

Mas continuava a haver questões que se obtinham como resposta números que não eram reais (no sentido que os matemáticos então davam ao termo). Por exemplo, a equação simples x 2 + 1 = 0 (qual o número que, multiplicado por si mesmo e adicionado a um, dá zero?)

É fácil ver que o número que, multiplicado por si mesmo e subtraindo quatro dá zero é o 2 (2x2 - 4 = 4 - 4 = 0). Mas e qual o número que multiplicado por si mesmo e adicionado a um, dá zero?
Durante muito tempo os matemáticos respondiam que não há esse número e descartavam a pergunta como sendo irrelevante. Mas, como já se disse aqui no Cognosco, os matemáticos são seres que não se contentam com aceitar as limitações:
quando elas existem resolvem-nas ou contornam-nas.
Foi o que fizeram neste caso. A solução da equação não era «real» então criaram um número a que chamaram «i» (de imaginário), que seria essa solução.
i 2 = -1. Assim i 2 + 1 = -1 + 1 = 0.

Este novo número tem uma série de propriedades curiosas e cria, só por si, um conjunto inteiramente novo de números, o Conjunto dos números Complexos, que tem o símbolo (um C maiúsculo com um traço vertical no interior, para o distinguir da letra)

Todos os conjuntos de números «encaixam» uns nos outros, como matryoshka russas.

Os números naturais são os inteiros positivos, os inteiros são os racionais em que o denominador (o número que divide) é 1, os reais são os números racionais mais os irracionais, os complexos são os reais mais o i

Um número complexo é formado por duas partes: uma parte real e uma parte imaginária (ligada a i). Por exemplo 5 + 3i. (5 + 3i)2 = 5x5 + 5x3i + 3ix5 + 3ix3i = 25 + 30i - 9 = 16 + 30i.
Qualquer número pode ser escrito como um número complexo.
1 = 1 + 0i; -4,6735 = -4,6735 + 0i; ...

Quando um número é real a sua parte imaginária é 0, pelo que só se obtém a parte real (que é igual ao próprio número). Mas há várias formas de representar o mesmo número complexo (tal como 1/2 = 4/2 = 6/3 = 88/44 = ...)
Assim, -1 = 0 + i2, 5 = 0 - 5i2, ...

Num outro artigo falarei das operações com números complexos (todas as que se fazem com os números reais também são feitas com os complexos).
Para já fica a noção de que «há mais números entre o céu e a terra do que sonha a tua filosofia» (adaptada da frase There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy da cena 5, do primeiro acto, da peça Hamlet de Shakespeare).

Fica uma das mais bonitas equações matemáticas, que liga quatro dos mais importantes números (só falta o φ...):
Esta fórmula (do profícuo Euler, de que já se falou em:
~ As pontes de Königsberg;
~ Omnia factus mathematica;
~ Euler ergo Platon)
liga os números:
«e» (a base para o cálculo moderno e cujo símbolo é uma homenagem a Euler;
«π» (a razão entre o perímetro de uma circunferência e o seu diâmetro;
«0» e «1» (os números com os quais os computadores geram o nosso mundo tão eficientemente)


Publicado por Mauro Maia às 15:26
Atalho para o Artigo | Cogitar | Adicionar aos favoritos

12 comentários:
De deprofundis a 13 de Março de 2006 às 15:09
Eureka! Já sei por onde foi que a minha alma (se alguma vez a tive) se escapuliu! Não tenho culpa de gostar de feijões...


De Mauro a 14 de Março de 2006 às 11:16
Muito má ideia tinha Pitágoras. «deprofundis» do que constituía a alma humana, para a associar a uma brisa com tão nefandos odores....


De Maria Papoila a 14 de Março de 2006 às 21:16
Esta crença do Pitágoras deixou-me atónita! Mauro venho dizer-te que mudei de campo. Fiz um balanço no antigo, e mudei para um novo em http://a-papoila.blogspot.com que a 18 de Março publicará uma carta de guerra de meu avô, e far-te á referencia. Não deixarei de visitar este espaço indefinido onde me cresço. Beijo


De Mauro a 15 de Março de 2006 às 12:04
Inserindo a questão, «maria papoila», da origem da flatulência no contexto histórico-científico em que Pitágoras se inseria é uma resposta inteligente para uma questão complexa: na presunção da existência da alma e o desconhecimento dos mecanismos do sistema digestivo, Pitágoras acabou por dar a melhor resposta em função dos poucos dados que possuía. A proibição pitagórica do consumo de leguminosas é uma questão (que muito admiro e permanentemente busco em mim) de auto-coerência: ninguém deseja perder a alma. Fica é a curiosa questão de saber quanta alma é que um ser humano tem, para aferir quanta se pode perder sem se perder como pessoa. Talvez Pitágoras visse as doenças degenerativas do sistema nervoso central, como a Parkinson, a Alzheimer ou a Esclerose Múltipla como um simples caso de excesso de flatulência... (brinco com o conceito de Pitágoras e NÃO, de forma alguma, com as doenças que refiro, que já me levaram, sem levar, a minha avó, vegetal num lar aprisionada por Alzheimer e não há cavaleiro de armadura branca que a possa resgatar...) Não deixarei de visitar o teu novo espaço com muita curiosidade e expectativa: não há nada como um passeio por um campo aromatizado por Papoila selvagens...


De lenda a 15 de Março de 2006 às 22:01
A renúncia implica numa escolha maior,
inalcançável aos olhos comuns.
Aos olhos humanos, pode parecer desvario.
Somente a alma pronta para ela haverá de compreendê-la,
pois sabe do que precisa, aquilo que quer...

Renuncia aquele que se encontra pronto para o verdadeiro Amor,
e o faz através da doação de si mesmo.
Pode ser um ato incompreensível, mas não descabido. Seu sentido
extrapola barreiras desconhecidas e somente a luz haverá de
conhecê-la em seu reduto mais íntimo.

O sol não renuncia a si mesmo em favor da noite?
Contudo, grande em sua doação, nos
encanta através da beleza do luar...

Renúncia: passo difícil, sem glórias, lauréus ou alaridos.
Passa incólume à maioria e sua essência sempre é o Bem Maior...

Quantas há, no dia a dia, que sequer percebemos?



De Mauro a 15 de Março de 2006 às 22:22
Só te posso dizer, «lenda», que a pertinência involuntária das tuas palavras abalou-me neste momento em que as leio e depois de ver o teu blog.


De maresia a 15 de Março de 2006 às 23:17
e as letras? http://janpeters.net/pics/stuff/alphabet.gif aqui</a>


De Mauro a 15 de Março de 2006 às 23:56
Muito interessante a evolução das letras, «maresia». Recorda-me o artigo que escrevi sobre o «imperador» romano Cláudio, que criou 3 novas letras como resposta à mãe que lhe disse «Tens tantas possibilidades de chegar a imperador como tens de mudar o alfabeto» http://cognosco.blogs.sapo.pt/arquivo/788623.html Sem dúvida um excelente contributo e uma óptima sugestão para um futuro artigo...


De maresia a 17 de Março de 2006 às 10:38
Olá Mauro, venho aqui pedir-te um "empréstimo"... O meu filho de 16 anos, como qualquer adolescente que se preze, esbarra de frente com a matemática. Acima de tudo, por duas razões:
- até aos 14 anos ninguém o obrigava a ir às aulas e nunca assimilou as bases que precisava;
- [ainda e quase] não encontrou nada no meio dos números que tenha piada suficiente para o cativar.

Tenho comprado alguns dos livros de exercícios editados pelo Sporting, brincadeiras baseadas na estrutura da equipa, dos jogos, dos treinos, das lesões... Achei este artigo fantástico e gostava de lho oferecer. Na casa onde ele está não podem aceder à Internet com calma e tempo suficientes para o ler online, a única forma é oferecer-lho em papel. Ajudas-me a cativar um adolescente? Posso imprimir?

Quando li este texto, a primeira coisa que me veio à cabeça foi "é isto!"

Já agora, antes de decidir oferecê-lo, pedi ao meu Pai uma opinião, ele tem "algum" conhecimento sobre estas ciências... faz investigação nas áreas da Cosmologia, Astrofísica e outras coisas que nem sei o nome. A resposta foi "muito bom". Quando o meu Pai me diz "muito bom" eu assumo como verdade absoluta e sem qualquer relatividade! Que se dane o Einstein...

Ia deixar-te aqui um pequeno episódio, mas a Onda está em baixo... É um dos primeiros em 2005.


De Mauro a 17 de Março de 2006 às 12:02
«Maresia», é sempre um previlégio sabermos que podemos auxiliar alguém a descobrir um pouco desse Universo fascinante que é a Matemática. E é um triplo previlégio ter também o teu apreço pelo artigo e a distinção do teu astronómico Pai. Está à vontade, os artigos do Cognosco só são meus enquanto não carrego no botão para publicar. Após o fazer saem de mim para o Mundo e eu só posso esperar que dêem flores bonitas. Este parece ser o caso, que bom.


Comentar artigo

Cognosco ergo sum

Conheço logo sou

Estatísticas

Nº de dias:
Artigos: 336
Comentários: 2358
Comentários/artigo: 7,02

Visitas:
(desde 26 de Abril de 2005)
no Cognosco
 
Cogitações recentes
Obrigado, João, pela contribuição. Não está no art...
Estive lendo sua cogitação à respeito do cálculo d...
Obrigado, Aleff, pelo apreço pelo artigo. Exatamen...
achei muito interessante essa sua forma de ver a l...
Obrigado, Desejo um bom 2014 também.
Artigos mais cogitados
282 comentários
74 comentários
66 comentários
62 comentários
44 comentários
Artigos

Março 2017

Fevereiro 2017

Janeiro 2017

Dezembro 2016

Novembro 2016

Outubro 2016

Julho 2016

Março 2015

Dezembro 2014

Outubro 2013

Maio 2013

Fevereiro 2013

Outubro 2012

Setembro 2012

Agosto 2012

Junho 2012

Janeiro 2012

Setembro 2011

Abril 2011

Fevereiro 2011

Dezembro 2010

Maio 2010

Janeiro 2010

Agosto 2009

Abril 2009

Fevereiro 2009

Janeiro 2009

Novembro 2008

Outubro 2008

Agosto 2008

Julho 2008

Junho 2008

Abril 2008

Fevereiro 2008

Janeiro 2008

Novembro 2007

Outubro 2007

Agosto 2007

Julho 2007

Junho 2007

Maio 2007

Abril 2007

Março 2007

Fevereiro 2007

Janeiro 2007

Dezembro 2006

Novembro 2006

Outubro 2006

Setembro 2006

Agosto 2006

Julho 2006

Junho 2006

Maio 2006

Abril 2006

Março 2006

Fevereiro 2006

Janeiro 2006

Dezembro 2005

Novembro 2005

Outubro 2005

Setembro 2005

Julho 2005

Junho 2005

Maio 2005

Abril 2005

Março 2005

Fevereiro 2005