Diário das pequenas descobertas da vida.
Sábado, 7 de Janeiro de 2006
Fractais
Qual é a forma de uma nuvem? Qual é a forma de uma montanha? Qual é a forma de uma árvore? Qual é a forma de um rio?

As formas dos objectos no mundo são geralmente pensadas em termos das figuras geométricas clássicas (círculos, triângulos, quadrados, esferas, cubos,...).
Mas nada no Mundo tem a perfeição dessas figuras (e poucas são as que a parecem ter).
Os seres humanos apreciam bastante essas formas e é das suas mãos que geralmente surgem objectos com essas formas (mas apenas aproximadamente, mesmo que isso não seja visível a olho nu).

O mundo definitavamente não se apresenta visualmente como geométrico e é apenas a mente humana que as apercebe na realidade que a rodeia como aproximações desses ideais platónicos.

Mas se assim é, qual será a verdadeira forma das coisas no mundo?
Terá a Matemática (como única lente correcta para a observação do mundo) explicações e descrições para a forma como as coisas realmente se apresentam no mundo (e menos como «nós» gostaríamos de as ver)?

O mundo é um poço de surpresas mas o ser humano tem conseguido (nestes 5 milhões de anos desde que surgiram os hominídeos e nos 150 mil anos desde que surgiu o Homo Sapiens) permanentemente alargado a sua consciência, a sua cultura e o seu conhecimento de forma a compreender mais e mais a infinita complexidade do mundo no qual nasceu e no qual foi moldado (uma complexidade que se espelha no próprio cérebro humano que a procura entender).

Nos anos 70 do século XX a espécie humana deu mais um dos decisivos passos na percepção do mundo tangível. Nessa década o matemático francês Benoit Mandelbrot estudou umas estranhas formas matemáticas que eram há muito conhecidas pelos matemáticas como «curvas monstruosas», figuras como a curva com 1 dimensão que ocupava completamente o plano de 2 dimensões. Mas a ninguém tinha ocorrido que essas «curvas monstruosas» eram a chave para a representação do mundo real.
Alguns fractais

Mandelbrot estudou essas estranhas formas como um todo, deu-lhes o nome de «fractais» e estudou as suas propriedades, propriedades que apenas se tornaram possíveis de estudar com o advento dos computadores (e especialmente dos computadores pessoais).

Um fractal é uma figura geométrica que tem:
~ uma dimensão que não é inteira (enquanto as figuras geométricas clássicas têm dimensão 2 ou 3 os fractais têm dimensões como 1,123);
~ têm uma infinita complexidade (por muito que se façam ampliações a figura é sempre intrincada e cheia de pormenores);
~ apesar da sua complexidade são contruídos usando regras muito simples.
Geralmente também os fractais têm auto-semelhança a um grau infinito, isto é, pequenas partes da figura são iguais ao todo.

~ Como assim «têm dimensões que não são inteiras»? Como pode uma figura que se desenha num papel que tem 2 dimensões ter uma dimensão diferente de 2?

Apesar de os fractais terem dimensões não inteiras, a sua dimensão é sempre inferior à do espaço que ocupa (um fractal desenhado numa folha de papel tem uma dimensão menor do que 2, um fractal numa escultura tem uma dimensão menos do que 3).
Mas como se calcula essa dimensão?

Para isso é necessário um conceito muito simples (e largamente usado antes do surgimento dos computadores) para o cálculo de multiplicações com grandes números: os logaritmos.

O logaritmo é a função inversa exponenciação (tal como a subtracção é a função inversa da soma, a divisão da mutltiplicação).
Quando se eleva 2 ao cubo (2x2x2) obtém-se 8.
Quando se eleva 4 a cinco (4x4x4x4x4) obtém-se 1024.

Então, o número que elevado a 3 dá 8 é 2 (o logaritmo de base 2 de 8 é 3); o número que elevado a 5 dá 1024 é 4 (o logaritmo de base 4 de 1024 é 5).
Qual é o logaritmo de base 9 de 81? (como 9 elevado a 2 dá 81, o logaritmo de base 9 de 81 é 2).

Para estudar a dimensão destas estranhas formas a que se dá o nome de «fractais» usa-se o que é designado por Dimensão de Hausdorff-Besicovich.
Este processo de cálculo envolve primeiro determinar o tamanho do objecto depois de se efectuar um dado aumento. Faz-se então a divisão entre o logaritmo (não interessa a base) do novo tamanho e o logaritmo (com a mesma base do anterior) do factor de aumento.

e.g.
~ Imagine-se um segmento de recta.
Se se aumentar 2 vezes o segmento de recta este fica com o dobro de comprimento (cabem 2 segmentos com a dimensão original no novo segmento).
A dimensão é então log 2 / log 2 = 1
~ Imagine-se um quadrado.
Se se aumentar 2 vezes o quadrado este fica com o quádruplo do tamanho (cabem 4 quadrados com a dimensão original no novo quadrado).
A dimensão é então log 4 / log 2 = 2
~ Imagine-se um cubo.
Se se aumentar 2 vezes o quadrado este fica com o óctuplo do tamanho (cabem 8 cubo com a dimensão original no novo cubo).
A dimensão é então log 8 / log 2 = 3
Uma nota para explicar estes log sem base que aqui se apresenta na fórmula:
devido ao seu constante uso em Matemática, subentende-se que log é o logaritmo de base 10. Outros logaritmos têm de ter a base indicada (log 2, log45, ...)


Quando se aplica esta fórmula aos fractais descobre-se que os valores não são inteiros. Veja-se a aplicação da dimensão de Hausdorff-Besicovich a um dos fractais mais simples: a Curva de Köch ou Floco de Neve.
Para a sua contrução comece-se por um triângulo equilátero. Junte-se depois a meio de cada lado um triângulo equilátero que tem de lado um terço (1/3) do anterior. Em cada um dos 3 triângulos mais pequenos junte-se um triângulo um terço mais pequeno. Repete-se indefinidamente o processo.
Obtém-se uma figura com uma área finita (é sempre inferior à circunferência que o circunscreve) e um comprimento infinito.


Como se vê esta figura tem todas as características de um fractal:
~ Cada figura seguinte é igual à anterior com a junção de triângulos que são 1/3 maiores.
Assim a cada passo obtém-se um figura que é 4/3 maior do que a anterior.
(Se cada lado for dividido em 3 partes, o triângulo que se lhe junta é constituido por 2 dessas partes. Cada lado passa a ter 1/3+1/3+1/3+1/3 = 4/3 de comprimento.)
Então a Curva de Koch tem dimensão log 4 / log 3 = 1,26185950714291487419905422868552...
~ não é difícil de visualizar que cada pequena parte da Curva de Koch é uma reprodução da figura maior, situação que se repete infinitamente.
~ A construção da curva é muito simples: pega-se num triângulo, calcula-se 1/3 e coloca-se no meio do triângulo anterior, repete-se indefinidamente.
~ A curva tem um grau de pormenor infinito: por mais que se amplie a figura, há sempre igual nível de detalhe.

Um outro fractal de simples construção é o Triângulo de Sierpinski.
Pegue-se num triângulo equilátero. Retire-se o triângulo que mede 1/3 do original.
Para os triângulos restantes repete-se. Obtém-se um fractal que tem comprimento infinito e área nula!


Os belos fractais que se apresentam acima têm uma construção igualmente simples (uma única e pequena fórmula) que é aplicada indefinidamente. O resultado é cada um dos fractais que se apresentam (a que é adicionada cor, em função do tipo de resultado que cada aplicação da fórmula produz).

O fractal mais conhecido é o Conjunto de Mandelbrot, por ter sido descoberto pelo criador da Teoria dos Fractais, Benoit Mandelbrot.
Para a construção deste fractal começa-se por usar o ponto de coordenadas (0, 0).
(na verdade usa-se o número complexo 0 + 0i, mas este é geometricamente igual).

Em seguida aplica-se a fórmula zn+1 = zn2 + C.

Se o ponto a que se aplica a fórmula produz continuamente números maiores, o ponto é representado com uma cor, dependente da «velocidade» a que os pontos crescem.
Se o ponto produz números pouco maiores do que si mesmo, é representado a preto.
O resultado de se aplicar continuamente esta pequena fórmula é o belo, intrincado e infinitamente complexo fractal de Mandelbrot, que possui igualmente a infinita complexidade, a simplicidade de construção, a dimensão fractal e a auto-semelhança.



É dessa forma que as formas aparentemente impossíveis de complexidade do mundo orgânico (e não só) podem surgir de princípios muito simples.
Não é difícil de visualizar, nos fractais apresentados acima, formas biológicas como folhas ou animais microscópicos. A representação fractal faz hoje parte das simulações por computador de cadeias de montanhas, com uma verosimilhança altamente sofisticada.


Publicado por Mauro Maia às 18:05
Atalho para o Artigo | Adicionar aos favoritos

Comentar:
De
 
Nome

Url

Email

Guardar Dados?

Ainda não tem um Blog no SAPO? Crie já um. É grátis.

Comentário

Máximo de 4300 caracteres



O dono deste Blog optou por gravar os IPs de quem comenta os seus posts.

Cognosco ergo sum

Conheço logo sou

no Cognosco
 
Cogitações recentes
Olá Ribeiro. Eis um link atualizado para a folha d...
Seria possível fornecer um link atualizado para o ...
Obrigado, João, pela contribuição. Não está no art...
Estive lendo sua cogitação à respeito do cálculo d...
Obrigado, Aleff, pelo apreço pelo artigo. Exatamen...
Artigos mais cogitados
282 comentários
74 comentários
66 comentários
62 comentários
44 comentários
Artigos

Setembro 2018

Novembro 2017

Outubro 2017

Agosto 2017

Julho 2017

Junho 2017

Maio 2017

Abril 2017

Março 2017

Fevereiro 2017

Janeiro 2017

Dezembro 2016

Novembro 2016

Outubro 2016

Julho 2016

Março 2015

Dezembro 2014

Outubro 2013

Maio 2013

Fevereiro 2013

Outubro 2012

Setembro 2012

Agosto 2012

Junho 2012

Janeiro 2012

Setembro 2011

Abril 2011

Fevereiro 2011

Dezembro 2010

Maio 2010

Janeiro 2010

Abril 2009

Fevereiro 2009

Janeiro 2009

Novembro 2008

Outubro 2008

Agosto 2008

Julho 2008

Junho 2008

Abril 2008

Fevereiro 2008

Janeiro 2008

Novembro 2007

Outubro 2007

Agosto 2007

Julho 2007

Junho 2007

Maio 2007

Abril 2007

Março 2007

Fevereiro 2007

Janeiro 2007

Dezembro 2006

Novembro 2006

Outubro 2006

Setembro 2006

Agosto 2006

Julho 2006

Junho 2006

Maio 2006

Abril 2006

Março 2006

Fevereiro 2006

Janeiro 2006

Dezembro 2005

Novembro 2005

Outubro 2005

Setembro 2005

Julho 2005

Junho 2005

Maio 2005

Abril 2005

Março 2005

Fevereiro 2005