Últimas atualizações
Novo endereço do Cognosco: http://www.cognoscomm.com
Diário das pequenas descobertas da vida.
Sábado, 11 de Novembro de 2006
Imaginário escocês
Às voltas com os seus números imaginários, não se apercebeu da súbita travagem. Felizmente tinha o cinto de segurança ou teria atravessado o vidro e só parado na estrada.
«Que irónico» pensou «foram estes números tão inocentes que estou a estudar que quase me atiraram pelo pára-brisas do carro!»
</br></br>

Mas que ligação pode haver entre números imaginários e algo tão real como uma travagem brusca?</br></br>

Para responder a esta questão é preciso primeiro compreender o que são exactamente números imaginários. O nome é enganador e são, na verdade, tão «reais» como qualquer outro número. Veja-se o artigo Simplesmente complexo para mais sobre diversos tipos de números. Os números «reais» são aqueles que habitualmente se usa no dia-a-dia (23; 45,34343; -234234,25245345; 5/6; ...) Os números «imaginários» são aqueles que correspondem a raízes quadradas (e de outros índices pares) de números negativos e sublinha-se a sua natureza «diferente» juntando-lhe um «i» minúsculo (23i; 45,34343i; -234234,25245345i; 5i/6; ...)</br>
Um número «real» pode ser colocado numa recta de tal forma que quanto mais à direita se situa maior é, quanto mais à esquerda menor é.</br>
Um número «imaginário» pode ser colocado numa recta perpendicular à recta «real», de tal forma que quanto mais para cima se situa maior é e quanto mais para baixo menor é.</br></br>

Mas os dois, mesmo diferentes, juntam-se num todo a que se chama Corpo dos Números Complexos (). Um número complexo é formado pela junção de um número real e de um número imaginário (sublinho energicamente que os termos «real» e «imaginário» são meros rótulos para o número, ambos têm tanta realidade uns como os outros, só existem nas mentes humanas). Enquanto os números «reais» e «imaginários» se situam em duas rectas perpendiculares, os número complexos situam-se no plano definido pelas duas rectas (o Plano de Argand). Devido à natureza dual dos complexos, não é possível definir qual é o maior (2 + i é menor que 1 + 2i?)</br>
Exemplos de números complexos: 2 + i; -45,3434 - 5665,24245i; 4/5 - 2i/3; 0 + 2i...</br></br>

Galileo GalileiNos processos físicos da Natureza, os físicos, desde pelo menos Galileu (1564-1642), medem grandezas, atribuem valores numéricos a fenómenos, comparam acontecimentos usando a sua intensidade numérica,... A Matemática é de tal forma imprescindível à Física para compreender o Mundo que estudar a Natureza é estudar Matemática. Ver os artigos:</br>
~
Omnia factus mathematica para uma reflexão pessoal sobre a razão pela qual a Matemática é tão inerente à compreensão do Mundo;</br>
~
Apolo não favoreceu Aristóteles sobre Galileu e a queda à mesma velocidade de todos os corpos, independentemente da sua massa;</br>
Quando foram «descobertos» (ou criados), os números ditos «imaginários» ou «complexos» surgiam unicamente na resolução de equações em que surgiam (a meio do cálculo ou no final) raízes pares de números negativos.</br>
Ver o artigo É radical para o algoritmo para a extracção manual das raízes quadradas e cúbicas. E mantiveram a sua aura de «meras ferramentas» teóricas durante bastante tempo, de tal forma que o epíteto «imaginários» ficou, apesar de já não ser correcto (como o termo «desastre», que significa «má estrela», num tempo em que se pensava que as estrelas podiam afectar acontecimentos na Terra).</br></br>

Acelerador de Partículas Fermilab, Chicago, EUAMas há hoje aplicações dos números «complexos» na Física que lhe conferem uma realidade que os iguala aos restantes números. E não é unicamente em Aceleradores de Partículas (para quem tenha dúvidas sobre se é «aceleração» ou «acelaração», basta recordar que a raíz da palavra é o latino «celere») ou em rebuscados cálculos.</br>
Sabe-se, desde que Newton formulou as suas Leis do Movimento, que um corpo parado fica parado até sobre ele se exercer uma força ou que um corpo com movimento rectilíneo uniforme (ou seja, sempre com a mesma velocidade) se mantém em movimento rectilíneo uniforme até sobre ele se exercer uma força (como, por exemplo, o atrito do ar).</br>
Ver o artigo Conor explicare gravitatem para uma pequena descrição das Leis do movimento de Newton e a gravidade.</br></br>

O que ninguém, até à década de 60 do século XX, sabia como explicar era porque razão os corpos tinham essa tendência de se manterem ou parados ou em movimento rectilíneo uniforme, porque razão resistem à mudança de velocidade, num fenómeno a que se chama inércia (não confundir o termo físico «inércia», que engloba movimento parado e rectilíneo uniforme, com o termo comum «inércia», que engloba apenas o movimento parado). Além disso, quanto mais massa um objecto tem mais inércia possui. Assim, travar um automóvel ligeiro é mais fácil e rápido do que parar um camião de carga.
É também mais fácil pôr um carro em movimento do que pôr o camião...</br>
Além disso, num carro em movimento, se há uma travagem brusca, o corpo dos seus ocupantes parece ser projectado para a frente (daí a necessidade de cintos de segurança). Na verdade o que acontece, é que o corpo se mantém em movimento até sobre ele se exercer uma força (se se for esperto pelo cinto de segurança, se não pelo pára-brisas).</br></br>

Peter HiggsNa década de 60 do século XX, um físico escocês de nome Peter Higgs (nascido em 1929 e ainda vivo, em 2006, com 77 anos) avançou com uma Teoria que viria a dar resposta a esta questão que nem Newton nem Einstein tinham resolvido (ou querido resolver). A sua solução foi o Campo de Higgs. Higgs teorizou (ainda não há provas concretas de que esteja correcto tal como não há provas concretas de que não esteja, após 50 anos de pesquisa) que a razão pela qual as partículas materiais resistem à modificação do seu movimento é devido à sua interacção com um campo, até antão insuspeito, criado por uma partícula ainda por descobrir. Este Campo de Higgs explica, se estiver correcto, muitas das propriedades do Universo, e será necessário uma prova esmagadora para ser desacreditado.</br>
Outros campos na natureza são o campo gravítico, gerado pelo ainda-por-descobrir gravitão, ou a luz/campo electro-magnético, gerado pelo fotão.</br></br>

Da mesma forma que agitar a mão através do ar é mais fácil do que agitá-la dento de um balde de cola, as partículas, como os quarks e os electrões, «sentem» uma resistência ao seu movimento. Esta é provocada pela sua interacção com este Campo de Higgs, que permeia tudo no Universo, desde o espaço interestelar à mais funda mina ao interior de uma bola de ferro ou da mão de alguém. Tudo se encontra imerso no Oceano de Higgs (termo pelo qual também é conhecido o Campo de Higgs), a sua influência é sentida em qualquer ponto do Cosmos e é gerado pelo ainda-não-descoberto bosão de Higgs. Todas as partículas são afectadas pelo Campo de Higgs e o seu movimento é afectado de formas diferentes. Quanto maior é a influência, maior é a resistência e mais massa a partícula adquire devido a complementariedade energia-massa de Einstein (E=mc2).</br></br>

Um aspecto curioso sobre os diversos campos gerados por partículas é que a sua intensidade oscila de acordo com a temperatura a que estão sujeitos.</br>
À temperatura actual média do Universo (2,7k = -270,45ºC) ou à temperatura média da Terra (288,15k = 288,15ºC) ou mesmo à temperatura no centro do Sol (13 600 000k = 13 599 726,85ºC) esta oscilação é imperceptível. Ver o artigo Está frio por aqui para mais sobre as temperaturas Kelvin (k) e Celsius (ºC)</br>
Quando o Universo surgiu, após o Big Bang, a sua temperatura era imensa. 10-43 segundos após Big Bang a temperatura era 1032K (100 quintiliões de graus Celsius). Ver Cardinando sobre a contagem de milhões, biliões, ...</br>
Os campos de todas as partículas oscilavam furiosamente, entre valores extremados negativos e positivos e também o Oceano de Higgs tinha gigantescas ondas. Nesta época, como o Campo de Higgs não tinha estabilizado, as diferentes partículas não estavam ainda sujeitas à sua influência. Não havia assim resistência ao seu movimento e, por isso, todas tinham massas nulas e eram indistinguíveis (nessa altura, luz e electricidade eram uma e a mesma coisa).</br></br>

Mas, 10-11 segundos após o Big Bang, a temperatura tinha descido até aos 1015K (1 mil biliões de graus Celsius). A esta temperatura, o Campo de Higgs estabilizou num valor não nulo (246 GeV, gigaelectronvolts). Tinha-se formado o Oceano de Higgs que ainda hoje nos submerge a todos. As diferentes partículas começaram a sentir resistência aos seus movimentos e foi aí que surgiram as diferenças entre os campos das diferentes partículas: as forças nucleares separam-se, a gravidade e a electricidade seguiram caminhos opostos...</br></br>

As partículas começaram a sentir resistência ao seu movimento e ganharam massas diferentes. A massa de um electrão em repouso é 9,11-31 kg e a do quark «topo» ficou 3,1885-25 kg (350 mil vezes superior).</br></br>

Porque razão partículas que eram iguais inicialmente reagiram de formas tão diferentes ao mesmo Campo de Higgs ainda é uma incógnita. Mas a resposta está ligada ao facto de o Campo de Higgs assumir valores «complexos» em vez de «reais».
A electricidade pode assumir, por exemplo, o valor «real» 60 volts (se bem que, como referido por «.», poder ser descrita, no caso de uma corrente alternada, por um número complexo), mas o Campo de Higgs assume valores como, por exemplo, 60 + 45,454i.</br>
A componente «imaginária» do Campo de Higgs confere às partículas massas diferentes...</br></br>

Os números «imaginários» são o que confere realidade a coisas como sentir a brisa no rosto quando se viaja num descapotável num quente dia de Verão...</br></br>

Para uma explicação acessível sobre o Campo de Higgs, ver, no livro O tecido do Cosmos, o capítulo 9 «Vaporizar o vácuo».
Nele se explica o Campo de Higgs e como, devido ao facto de o Oceano de Higgs ter assumido um valor não nulo, o vácuo perfeito livre de quaisquer matéria ou energia, é impossível. O Campo de Higgs está sempre presente e para o remover é preciso adicionar mais de mil biliões de graus Celsius. Ou se tem o Campo de Higgs ou a energia necessária para o remover...</br>
Também se esclarece que a teoria do Campo de Higgs, apesar de ter este nome, necessitou da participação de Thomas Kibble, Philip Anderson, R. Brout, François Englert para se estabelecer como teoria válida.


Publicado por Mauro Maia às 14:19
Atalho para o Artigo | Adicionar aos favoritos

Comentar:
De
 
Nome

Url

Email

Guardar Dados?

Ainda não tem um Blog no SAPO? Crie já um. É grátis.

Comentário

Máximo de 4300 caracteres



O dono deste Blog optou por gravar os IPs de quem comenta os seus posts.

Cognosco ergo sum

Conheço logo sou

Estatísticas

Nº de dias:
Artigos: 336
Comentários: 2358
Comentários/artigo: 7,02

Visitas:
(desde 26 de Abril de 2005)
no Cognosco
 
Cogitações recentes
Olá Ribeiro. Eis um link atualizado para a folha d...
Seria possível fornecer um link atualizado para o ...
Obrigado, João, pela contribuição. Não está no art...
Estive lendo sua cogitação à respeito do cálculo d...
Obrigado, Aleff, pelo apreço pelo artigo. Exatamen...
Artigos mais cogitados
282 comentários
74 comentários
66 comentários
62 comentários
44 comentários
Artigos

Setembro 2018

Novembro 2017

Outubro 2017

Agosto 2017

Julho 2017

Junho 2017

Maio 2017

Abril 2017

Março 2017

Fevereiro 2017

Janeiro 2017

Dezembro 2016

Novembro 2016

Outubro 2016

Julho 2016

Março 2015

Dezembro 2014

Outubro 2013

Maio 2013

Fevereiro 2013

Outubro 2012

Setembro 2012

Agosto 2012

Junho 2012

Janeiro 2012

Setembro 2011

Abril 2011

Fevereiro 2011

Dezembro 2010

Maio 2010

Janeiro 2010

Abril 2009

Fevereiro 2009

Janeiro 2009

Novembro 2008

Outubro 2008

Agosto 2008

Julho 2008

Junho 2008

Abril 2008

Fevereiro 2008

Janeiro 2008

Novembro 2007

Outubro 2007

Agosto 2007

Julho 2007

Junho 2007

Maio 2007

Abril 2007

Março 2007

Fevereiro 2007

Janeiro 2007

Dezembro 2006

Novembro 2006

Outubro 2006

Setembro 2006

Agosto 2006

Julho 2006

Junho 2006

Maio 2006

Abril 2006

Março 2006

Fevereiro 2006

Janeiro 2006

Dezembro 2005

Novembro 2005

Outubro 2005

Setembro 2005

Julho 2005

Junho 2005

Maio 2005

Abril 2005

Março 2005

Fevereiro 2005